
Package: simphony (via r-universe)
August 22, 2024

Type Package

Title Simulating Large-Scale, Rhythmic Data

Version 1.0.3

Description A tool for simulating rhythmic data: transcriptome data
using Gaussian or negative binomial distributions, and
behavioral activity data using Bernoulli or Poisson
distributions. See Singer et al. (2019)
<doi:10.7717/peerj.6985>.

URL https://simphony.hugheylab.org,

https://github.com/hugheylab/simphony

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 7.2.1

Roxygen list(markdown = TRUE)

Depends R (>= 3.4)

Imports data.table (>= 1.11.4), foreach (>= 1.4.4)

Suggests ggplot2 (>= 3.0.0), kableExtra (>= 0.9.0), knitr (>= 1.20),
limma (>= 3.34.9), precrec (>= 0.9.1), rmarkdown (>= 1.9),
testthat (>= 2.0.0)

VignetteBuilder knitr

Repository https://hugheylab.r-universe.dev

RemoteUrl https://github.com/hugheylab/simphony

RemoteRef HEAD

RemoteSha f5a705e50e644d1e787bf860a658bf2d6b0757e4

1

https://doi.org/10.7717/peerj.6985
https://simphony.hugheylab.org
https://github.com/hugheylab/simphony

2 defaultDispFunc

Contents
defaultDispFunc . 2
getExpectedAbund . 3
getSampledAbund . 4
mergeSimData . 5
simphony . 6
splitDiffFeatureGroups . 9

Index 11

defaultDispFunc Default function for mapping expected counts to dispersion.

Description

The function was estimated from circadian RNA-seq data from mouse liver (PRJNA297287), using
local regression in DESeq2. In a negative binomial distribution, variance = mean + mean2 ∗
dispersion.

Usage

defaultDispFunc(x)

Arguments

x Numeric vector of mean counts.

Format

An object of class function of length 1.

Value

Numeric vector of dispersions.

See Also

simphony()

Examples

means = 2^(6:10)
dispersions = defaultDispFunc(means)

getExpectedAbund 3

getExpectedAbund Calculate expected abundance

Description

Calculate expected abundance for multiple features at multiple timepoints in multiple conditions.

Usage

getExpectedAbund(
featureMetadata,
times = NULL,
sampleMetadata = NULL,
byCondGroup = is.null(times)

)

Arguments

featureMetadata

data.table with columns feature, base, rhyFunc, amp, period, and phase,
where every row corresponds to a gene. If byCondGroup is TRUE, then must also
have columns cond and group.

times Numeric vector of the times at which to calculate expected abundance for each
row in featureMetadata.

sampleMetadata data.table with columns sample, cond, and time. Either times or sampleMetadata
must be provided, and the former takes precedence.

byCondGroup Logical for whether to speed up the calculation by grouping by the columns
cond and group. Primarily for internal use.

Value

data.table derived from featureMetadata (but with more rows), with additional columns time
and mu and possibly others. If sampling will use the negative binomial family, mu corresponds to
log2 counts.

See Also

simphony(), getSampledAbund()

Examples

library('data.table')
featureMetadata = data.table(feature = c('feature_1', 'feature_2'),

base = function(x) 0,
amp = c(function(x) 0, function(x) 1),
period = 24,
phase = 0, rhyFunc = sin)

4 getSampledAbund

abundDt = getExpectedAbund(featureMetadata, times = 6:17)

getSampledAbund Sample abundance values

Description

Sample feature abundance values from the given distributions. This function is used internally by
simphony(), and should not usually need to be called directly.

Usage

getSampledAbund(
abundDt,
logOdds = FALSE,
family = c("gaussian", "negbinom", "bernoulli", "poisson"),
inplace = FALSE

)

Arguments

abundDt data.table of expected abundance. If family is ’gaussian’, required columns
are feature, sample, mu, and sd. If family is ’negbinom’, required columns
are feature, sample, mu, dispFunc, cond, and group. If family is ’bernoulli’
or ’poisson’, required columns are feature, sample, and mu.

logOdds Logical for whether mu corresponds to log-odds. Only used if family is ’bernoulli’.

family Character string for the family of distributions from which to sample the abun-
dance values. simphony will give a warning if it tries to sample from a distribu-
tion outside the region in which the distribution is defined: µ < 0 for negative
binomial and Poisson, and µ < 0 or µ > 1 for Bernoulli.

inplace Logical for whether to modify abundDt in-place, adding a column abund con-
taining the abundance values.

Value

Matrix of abundance values, where rows correspond to features and columns correspond to samples.

See Also

simphony(), getExpectedAbund()

mergeSimData 5

Examples

library('data.table')
set.seed(6022)
abundDt = data.table(feature = 'feature_1', sample = c('sample_1', 'sample_2'),

mu = c(0, 5), sd = 1)
abundMat = getSampledAbund(abundDt)

mergeSimData Merge abundance data, feature metadata, and sample metadata

Description

Merge a simulation’s abundance data, feature metadata, and sample metadata into one data.table.
This function is useful for making plots using ggplot2.

Usage

mergeSimData(simData, features = NULL)

Arguments

simData List with the following elements, such as returned by simphony():

abundData Matrix of abundance values, with rownames for features and col-
names for samples.

sampleMetadata data.table with columns sample and cond.
featureMetadata data.table with columns feature and cond.

features Character vector of features for which to get abundance data. If NULL, then all
features.

Value

data.table.

See Also

simphony()

Examples

library('data.table')
featureGroups = data.table(amp = c(0, 1))
simData = simphony(featureGroups)
mergedSimData = mergeSimData(simData, simData$featureMetadata$feature[1:2])

6 simphony

simphony Simulate feature abundance data

Description

Simulate experiments in which abundances of rhythmic and non-rhythmic features are measured at
multiple timepoints in one or more conditions.

Usage

simphony(
featureGroupsList,
fracFeatures = NULL,
nFeatures = 10,
timepointsType = c("auto", "specified", "random"),
timeRange = c(0, 48),
interval = 2,
nReps = 1,
timepoints = NULL,
nSamplesPerCond = NULL,
rhyFunc = sin,
dispFunc = NULL,
logOdds = FALSE,
family = c("gaussian", "negbinom", "bernoulli", "poisson")

)

Arguments

featureGroupsList

data.frame or data.table (for a single condition) or list of data.frames or
data.tables (for multiple conditions), where each row corresponds to a group
of features to simulate. The following columns are all optional:
fracFeatures Fraction of simulated features to allocate to each group. Defaults

to 1/(number of groups).
rhyFunc Function to generate rhythmic abundance. Must have a period of 2π.

Defaults to sin.
amp Amplitude of rhythm. Defaults to 0. Corresponds to multiplicative term

in front of rhyFunc. Can be numeric (constant over time) or a function
(time-dependent). See vignette for examples.

period Period of rhythm. Defaults to 24.
phase Phase of rhythm, in the same units as period. Defaults to 0. Corresponds

to an additive term in rhyFunc.
base Baseline abundance, i.e., abundance when rhyFunc term is 0. Depending

on family, defaults to 0 (’gaussian’), 8 (’negbinom’, mean log2 counts), 0
(’bernoulli’ with logOdds as TRUE), 0.5 (’bernoulli’ if logOdds as FALSE),
or 1 (’poisson’). Can be numeric (constant over time) or a function (time-
dependent). See vignette for examples.

simphony 7

sd Standard deviation of sampled abundance values. Defaults to 1. Only used
if family is ’gaussian’.

dispFunc Function to calculate dispersion of sampled abundance values, given
expected abundance in counts. Only used if family is ’negbinom’.

fracFeatures Fraction of simulated features to allocate to each group. Defaults to 1/(num-
ber of groups). Only used if the first featureGroupsList data.frame lacks a
fracFeatures column.

nFeatures Integer for the total number of features to simulate.

timepointsType Character string for how to set the timepoints for the simulation. Must be ’auto’
(default), ’specified’, or ’random’.

timeRange Numeric vector for the range of timepoints to use for the simulation. Defaults
to c(0, 48). Only used if timepointsType is ’auto’ or ’random’.

interval Number for the amount of time between consecutive timepoints, in the same
units as period. The first timepoint is 0. Only used if timepointsType is
’auto’.

nReps Integer for the number of replicates per timepoint. Only used if timepointsType
is ’auto’.

timepoints Numeric vector of exact timepoints to simulate, including any replicates. Only
used if timepointsType is ’specified’.

nSamplesPerCond

Integer for the number of samples per condition, which will be randomly uni-
formly spaced between 0 and period and different for each condition. Only
used if timepointsType is ’random’.

rhyFunc Function to generate rhythmic abundance. Must have a period of 2π. Defaults
to sin. Only used if a data.frame in featureGroupsList lacks a rhyFunc
column.

dispFunc Function to calculate dispersion of sampled abundance values, given expected
abundance in counts. Defaults to defaultDispFunc. Only used if family is
’negbinom’ and a data.frame in featureGroupsList lacks a dispFunc col-
umn.

logOdds Logical for whether the rhythmic function corresponds to log-odds. Only used
if family is ’bernoulli’.

family Character string for the family of distributions from which to sample the abun-
dance values. simphony will give a warning if it tries to sample from a distribu-
tion outside the region in which the distribution is defined: µ < 0 for negative
binomial and Poisson, and µ < 0 or µ > 1 for Bernoulli.

Value

List with the following elements:

abundData Matrix of abundance values (counts, if family is ’negbinom’), with features as row-
names and samples as colnames.

sampleMetadata data.table with one row per sample.

8 simphony

featureMetadata data.table with one row per feature per condition. Columns amp and base are
functions of time. Columns amp0 and base0 are numeric and correspond to the amplitude and
baseline abundance at time 0, respectively.

experMetadata List of arguments that were passed to simphony.

See Also

defaultDispFunc(), getExpectedAbund(), getSampledAbund(), mergeSimData()

Examples

library('data.table')

Simulate data for features having one of three sets of rhythmic parameters.
featureGroups = data.table(amp = c(0, 1, 1), phase = c(0, 0, 6),

rhyFunc = c(cos, cos, sin))
simData = simphony(featureGroups)

Simulate data for an experiment with specified timepoints and replicates.
featureGroups = data.table(amp = c(0, 1))
simData = simphony(featureGroups, timepointsType = 'specified',

timepoints = c(0, 2, 2, 4, 12, 16, 21))

Simulate data for an experiment with random timepoints between 0 and 24.
featureGroups = data.table(amp = c(0, 2))
simData = simphony(featureGroups, timepointsType = 'random',

timeRange = c(0, 24), nSamplesPerCond = 20)

Simulate data with time-dependent rhythm amplitude or baseline abundance
featureGroups = data.table(amp = c(function(x) 1, function(x) 2^(-x / 24)),

base = c(function(x) x / 12, function(x) 0))
simData = simphony(featureGroups)

Simulate data for features whose rhythmicity varies between two conditions.
featureGroupsList = list(

data.table(amp = c(1, 2, 2), phase = c(0, -3, 0), period = c(24, 24, 22)),
data.table(amp = c(3, 2, 2), phase = c(0, 3, 0), period = c(24, 24, 26)))

simData = simphony(featureGroupsList)

Simulate data from a negative binomial distribution with a higher variance.
featureGroups = data.table(amp = 1, base = 6:8)
dispFunc = function(x) 3 * defaultDispFunc(x)
simData = simphony(featureGroups, family = 'negbinom', dispFunc = dispFunc)

Simulate data at high temporal resolution from a Poisson distribution that
alternates between two states.
featureGroups = data.table(amp = 1, base = 0,

rhyFunc = function(x) ifelse(x %% (2 * pi) < pi, 0.5, 4))

simData = simphony(featureGroups, timeRange = c(0, 24 * 4), interval = 0.1,
nReps = 1, family = 'poisson')

splitDiffFeatureGroups 9

Simulate data for 100 features, half non-rhythmic and half rhythmic, with
amplitudes for rhythmic features sampled from a log-normal distribution.
nFeatures = 100
rhyFrac = 0.5
nRhyFeatures = round(rhyFrac * nFeatures)
rhyAmps = exp(rnorm(nRhyFeatures, mean = 0, sd = 0.25))
fracFeatures = c(1 - rhyFrac, rep(rhyFrac / nRhyFeatures, nRhyFeatures))
featureGroups = data.table(amp = c(0, rhyAmps), fracFeatures = fracFeatures)
simData = simphony(featureGroups, nFeatures = nFeatures)

Simulate data for 100 rhythmic features, with baseline log2 expected counts
and residual log dispersion sampled from distributions whose parameters
were estimated, using DESeq2 and fitdistrplus, from circadian RNA-seq data
from mouse liver (PRJNA297287).
nFeatures = 100
baseLog2Counts = rnorm(nFeatures, mean = 8.63, sd = 2.73)
dispFactors = exp(rnorm(nFeatures, sd = 0.819))
dispFuncs = sapply(dispFactors, function(z) {function(x) defaultDispFunc(x) * z})
featureGroups = data.table(base = baseLog2Counts, dispFunc = dispFuncs, amp = 1)
simData = simphony(featureGroups, nFeatures = nFeatures, family = 'negbinom')

splitDiffFeatureGroups

Split differential featureGroups

Description

Split a diffFeatureGroups data.frame into a list of two featureGroups data.frames, which can then
be passed to simphony().

Usage

splitDiffFeatureGroups(diffFeatureGroups, checkValid = TRUE)

Arguments

diffFeatureGroups

data.frame with optional columns meanBase, dBase, meanSd, dSd, meanAmp,
dAmp, meanPhase, and dPhase describing the changes in abundance between
two conditions. Each row corresponds to a group of features.

checkValid Logical for whether to only return rows for which both amplitudes are greater
than or equal to zero and both standard deviations are greater than zero.

Value

List of two data.tables with possible columns base, sd, amp, and phase, depending on the
columns in diffFeatureGroups.

10 splitDiffFeatureGroups

See Also

simphony()

Examples

dGroups = data.frame(meanAmp = c(1, 1, 1, 1), dAmp = c(1, 1, 2, 2),
meanPhase = c(0, 0, 0, 0), dPhase = c(0, 3, 0, 3))

featureGroups = splitDiffFeatureGroups(dGroups)

Index

∗ datasets
defaultDispFunc, 2

defaultDispFunc, 2
defaultDispFunc(), 8

getExpectedAbund, 3
getExpectedAbund(), 4, 8
getSampledAbund, 4
getSampledAbund(), 3, 8

mergeSimData, 5
mergeSimData(), 8

simphony, 6
simphony(), 2–5, 9, 10
splitDiffFeatureGroups, 9

11

	defaultDispFunc
	getExpectedAbund
	getSampledAbund
	mergeSimData
	simphony
	splitDiffFeatureGroups
	Index

